
Emergent Architertural Design

Project members:
Derk-Jan Karrenbeld - 4021967

Joost Verdoorn - 1545396
Steffan Sluis - 4088816
Tung Phan - 4004868

Vincent Robbemond - 4174097

Last edited: March 29, 2013

Contents

1 Introduction . 2
1.1 Design goals . 2

2 Software architecture views . 3
2.1 Subsystem Decomposition . 3

2.1.1 Server side . 3
Rails . 3
MVC . 3
Models and Database . 3
Views and ERB . 3
Coffeescript and Javascript . 3
SASS and CSS . 3

2.1.2 Client side . 4
Localstorage . 4
Interaction by Javascript . 4

2.2 Hardware/software mapping . 4
2.3 Persistent data management . 6
2.4 Concurrency . 6

3 Summary . 7
4 Glossary . 7

1

1 Introduction

This document contains the architectural design for the application created during the Context Project
‘Programming Life: Synthetic Biology’. The application is targeted at synthetic biologists and its main
purpose is to easily model the complex workings of a cell.
The design of this application is explained first in terms of its design goals. Then a subsystem decomposition
follows, which serves to uncover the inner workings of the application, along with a description of the mapping
of subsystems to processes and computers, a hardware/software mapping. After this, the management of
data and shared resources is discussed. In conclusion a short summary of the system architecture is given.

1.1 Design goals

Because the application has a very specific use, modelling cells and the processes within, the main design
goal is to make this as easy and intuitive as possible. Secondary to this goal is the possibility to access the
application from every common platform, such as not only desktop and laptop, but also mobile devices. Of
course, working and optimally performing software is the first goal to be strived towards. Because the field
of technology this application targets is fairly new, another design goal is to meet this field by using new
technologies. The teammembers actively agreed that they want to innovate and do selfstudy to broaden
their knowledge. Lastly, the software that is being developed should by maintainable.

2

2 Software architecture views

This section contains all the information about the software architecture of the application. The section is
divided into several subsections to group together interesting information and improve readability.

2.1 Subsystem Decomposition

This section describes the key subsystems in the application. It is divided into two sections, because the
application is diveded this way as well. The first subsection is about the server-side subsystems and the
second one is about the client-side subsystems.

2.1.1 Server side

The server subsystems consist of two key parts: the server backend and the database. The server keeps
an up to date copy of the database and sychronises with the client side when possible. It can also be used
to do calculations that are too complicated for the client-side of the application. It is dependent upon the
database, to synchronize the appropriate data to the appropriate client-backend corresponding with a user.
The database is used for storage of user data, modules for cell design, as well as cell models created using
the application. It provides a centralized storage so the client-side application can function on any platform
without a persistent internet connection. It is not dependent upon anything, although every function used
persistent data is dependent on it. A certain number of technologies are involved in the serverside.

Rails The server runs on Ruby on Rails. This is a fairly new but very stable platform that is not only
free but also open source. This means active development by a lot of people. Problems are easily fixed
and this should ease the use of the application that is being designed. The language itself is written from a
standpoint where you should just be able to write code and not worry about breaking the interpreter. This
makes it easy to write complex code.

MVC The pages served are HTML5 for markup with CSS3 for styling and Javascript for interaction.
Pages are built by a comprehensive and solid Model-Viewer-Controller system. This keeps data separated
from the representation, further increasing maintainability.

Models and Database Ruby models are mapped to any SQL enabled language such as SQLLite, MySQL
and PostgreSQL. By not restricting the server database technology, switching systems, servers or extending
their capacity should be fairly simple and easy.

Views and ERB The views are in ERB which is an HTML template system. It is provided with the
default Ruby library, so it does not require any extra software. Ruby controllers can expose data to these
views. New views are easily added this way, so new ways of data representation are quickly devised.

Coffeescript and Javascript Interaction assets are written in Coffeescript, which is a language specially
designed to make Javascript more maintainable, readable and cleaner alltogether. Coffedoc is used to doc-
ument this code and Jasmine is used to test the javascript output. In production a script called uglifier
minifies and bundles all the scripts.

SASS and CSS Styling assets are written in a language called Syntactically Awesome Stylesheets. Similar
to CoffeeScript, SASS makes it easier and cleaner to create extensive CSS.

3

2.1.2 Client side

The client side subsystems contain most of the applications functionality. These subsystems are responsible
for displaying the graphical environment with all it’s modules, as well as doing the basic simulating. If the
simulation becomes too complex, the complicated calculations can be sent to the sever to be processed on
the server side. If used locally, the client side subsystems function independently of the server. If used on
multiple machines, the client side can be made dependent on the server and the database to synchronize
user data.

Localstorage Javascript determines the local storage engine that is avaialbe and uses that to maintain an
offline copy of the application. This makes it very easy to design new cells.

Interaction by Javascript Javascript facilitates interaction and processes all the differential equations.
It generates the graphs and the reports.

2.2 Hardware/software mapping

The hardware/software mapping is illustrated by the image below. The server is a non-client piece of
hardware, and can therefore be chosen specifically to suit the clients needs. The client side hardware is
required to support current webbuilding standards, which qualifies almost every machine from almost every
platform to run the application.

4

5

2.3 Persistent data management

The application synchronizes any persistent data with the database running on the server. This ensures
availability of all user data if there is a connection to the server. The application also provides the possibility
to store data locally and export simulation results to a report in multiple standardized format, such as
HTML, Excel and PDF.

2.4 Concurrency

Each client runs independently and used asynchronous communication with the server through REST and
AJAX. Because of this, concurrency issues are very improbable. The client side application is web-based,
and uses only one process. Shared resources are retrieved directly from and synchronized directly with the
database.

6

3 Summary

The application is a lightweight, cross-platform graphical design tool with a centralized storage database.
The architecture ensures it’s functionality on different kinds of machines as well as the ease of simulating
complex cell models. It not only offers stability, ease and intuitive design, it offers it on every machine.

4 Glossary

This section explains any and all terms that may be ambiguous or unclear:

7

	Contents
	Introduction
	Design goals

	Software architecture views
	Subsystem Decomposition
	Server side
	Rails
	MVC
	Models and Database
	Views and ERB
	Coffeescript and Javascript
	SASS and CSS

	Client side
	Localstorage
	Interaction by Javascript

	Hardware/software mapping
	Persistent data management
	Concurrency

	Summary
	Glossary

